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Abstract. Differential cross-sections for Compton scattering from the proton have been measured at the
MAMI tagged photon facility using the TAPS setup. The data cover an angular range of θlab

γ = 59◦–155◦

and photon energies ranging from 55 MeV to 165 MeV. Our results are in good agreement with those from
previous experiments, but yield higher precision. Using dispersion relations the proton polarizabilities
have been determined to be ᾱ = [11.9 ± 0.5stat. ∓ 1.3syst. ± 0.3mod.] · 10−4 fm3 and β̄ = [1.2 ± 0.7stat. ±
0.3syst. ± 0.4mod.)] · 10−4 fm3. These results confirm the Baldin sum rule which was re-evaluated to be
ᾱ + β̄ = [13.8 ± 0.4] · 10−4 fm3. We can also conclude that there is no significant additional asymptotic
contribution to the backward spin polarizability γπ beyond the t-channel π0-exchange.

PACS. 11.55.Fv Dispersion relation – 13.60.Fz Elastic and Compton scattering – 14.20.Dh Proton and
neutrons – 25.20.Dc Photon absorption and scattering

1 Introduction

At incident photon energies far below the π-production
threshold, i.e. ω → 0, photon scattering from the proton
is described completely by the proton’s static properties
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mass and charge, which corresponds to the scattering of an
electromagnetic wave from a point particle with mass m
and charge e (Thomson scattering). This scattering pro-
cess is described by the scattering amplitude

fTh = − e2

m
ε′ε . (1)

Here, ε′ and ε are the polarization vectors of the incident
and the scattered photon.

With increasing photon energy additional terms arise
due to the magnetic moment µ. For the proton these terms
were calculated by Low [1], Gell-Mann and Goldberger [2],
and Klein [3] in their fundamental articles. They give an
expression for the expansion of the scattering amplitude
up to terms linear in the photon energy ω.

Petrun’kin [4,5] developed the complete scattering am-
plitude in a low-energy expansion up to order ω2,
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with the anomalous magnetic moment κ of the proton,
the electric and magnetic polarizabilities ᾱ and β̄, re-
spectively, and the directions n, n′ and energies ω, ω′ of
the incident and the scattered photon, respectively, with
n′n = cos θγ , where θγ is the photon scattering angle in
the lab-system. The first term on the r.h.s of eq. (2) is the
Thomson-amplitude fTh given in eq. (1). The following
six terms describe the scattering due to the magnetic mo-
ment. This part had been evaluated by Powell [6] already
in 1949 and was given in an appendix of his article about
bremsstrahlung. Up to here the proton is assumed to be
a point-like particle. The last term on the r.h.s of eq. (2)
is related to the internal structure of the proton and is
expressed in terms of the electromagnetic polarizabilities
ᾱ and β̄ 1.

Calculating the differential cross-section by squaring
the amplitude, gives rise to ω2-terms i) due to the terms
linear in ω or ω′, and ii) due to the interference of the
Thomson amplitude fTh and the terms proportional to
ωω′. Squaring the amplitude (2), averaging over the in-
cident photon polarizations and proton spin states and
summing over the final ones yields the differential cross-
section for scattering of unpolarized photons from unpo-
larized protons [4,5]:

(
dσ
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(
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−ωω′
(
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ω
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e2

m
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2
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]
.(3)

Here, and in the following, z = cos θγ . The differential
cross-section of a point-like proton is given by

(
dσ
dΩ

)
Point

=
1
2

(
e2

m

)2 (
ω′

ω
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1 + z2
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ωω′
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2
) }

, (4)

1 The polarizabilities ᾱ and β̄ are given in units of 10−4 fm3

throughout this article.

with the coefficients:

a0 = 2κ+ 9
2κ

2 + 3κ3 + 3
4κ

4 ,

a1 = −4κ− 5κ2 − 2κ3 ,

a2 = 2κ+ 1
2κ

2 − κ3 − 1
4κ

4 .

For κ = 0 one obtains the Klein-Nishina cross-section
[7] for scattering from a point-like charged particle with
spin 1/2.

The low-energy expansion of the Compton scattering
amplitude to the order ωω′ can be used up to about
80 MeV incident photon energy to extract ᾱ and β̄ in an
almost model-independent way from the measured differ-
ential cross-sections. With increasing energy the influence
of higher-order terms has to be taken into account. The
next-order terms are described by the four spin polariz-
abilities of the proton, γE1, γM1, γE2 and γM2 [8], two
combinations of which are of special interest. These are
the forward and backward spin polarizabilities:

γ = −γE1 − γM1 − γE2 − γM2 (5)

and
γπ = −γE1 + γM1 + γE2 − γM2 , (6)

respectively 2. Since the cross-sections are already domi-
nated by the excitation of the ∆-resonance at these en-
ergies, it is expected that the magnetic spin polarizabil-
ities are mainly given by the magnetic excitation of the
∆-resonance.

2 Compton scattering at higher energies

At photon energies close to π-production threshold and
above, an expansion of the scattering amplitude in orders
of the photon energy no longer makes sense and reliable
model calculations do not exist. Therefore, the dispersion
relation approach developed by L’vov [9] was used in the
present work. In this formalism the ingredients of the cal-
culation are partially fixed by experimental results, i.e. by
the multipoles of meson photoproduction. Other mecha-
nisms which dominate Compton scattering can therefore
be investigated in great detail, i.e. t-channel exchanges of
mesons coupling to two photons.

The scattering process is described by six invariant
amplitudes Ai for which the real parts can be written at
fixed t as [5,9]

ReAi(ν, t) = ABorn
i (ν, t) +Aint

i (ν, t) +Aas
i (ν, t). (7)

The first term on the r.h.s. is the Born contribution.
It corresponds to (dσ/dΩPoint) in eq. (3) and is com-
pletely determined by the proton’s charge, mass and mag-
netic moment. The second term on the r.h.s of eq. (7),
Aint

i (ν, t), is an integral part where the dispersion inte-
gral is evaluated from pion production threshold νthr, with

2 The spin polarizabilities γ and γπ are given in units of
10−4 fm4 throughout this article.
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ωthr = νthr(t)− t/4m = 150 MeV, to a maximum energy,
νmax, for which ωmax = νmax(t)−t/4m is taken to be equal
to 1.5 GeV [9]:

Aint
i (ν, t) =

2
π
P

νmax∫
νthr

ν′ImAi(ν′, t)
ν′2 − ν2

dν′ . (8)

The third term in eq. (7), Aas
i (ν, t), is the asymptotic part

which contains all contributions to the amplitude from
above νmax.

The imaginary parts of the amplitudes Ai can be ex-
pressed via the optical theorem, i.e. by making use of the
unitarity condition, mainly in terms of products of single
π-photoproduction multipoles supplemented by two-pion
contributions. A detailed description of all the ingredients
can be found in ref. [9].

In this formalism it can be shown that the Baldin sum
rule fixes the non-Born part of the amplitudes A3 and A6

in forward direction at ν = t = 0:

ᾱ+ β̄ = − 1
2π

[
Aint
3+6(0, 0) +Aas

3+6(0, 0)
]

(9)

=
1
2π2

∞∫
ωthr

σtot(ω′)
ω′2 dω′ . (10)

It can also be deduced from the non-Born part of A4 at
ν = t = 0 that

AnB
4 (0, 0) =

m

2π

∞∫
νthr

σ1/2
− σ3/2

ν′3 dν′ , (11)

which is equivalent to the forward spin polarizability sum
rule. In eq. (11) σ1/2

and σ3/2
are the absorption cross-

sections for definite helicity states of the incident photon
and proton. This is another constraint on the invariant
amplitudes as far as A4 is concerned:

γ =
1

2πm
[
Aint
4 (0, 0) +Aas

4 (0, 0)
]
. (12)

Additional constraints of the invariant amplitudes at
ν = t = 0 arise which are related to backward scattering:

ᾱ− β̄ = − 1
2π

AnB
1 (0, 0) , (13)

γπ = − 1
2πm

[
AnB
2 (0, 0) +AnB

5 (0, 0)
]
. (14)

The quantity γπ in eq. (14) is the backward spin polariz-
ability introduced in eq. (6).

The amplitudes Ai(ν, t) approach zero in the high-
energy limit at fixed t [9] except for the two amplitudes
A1(ν, t) and A2(ν, t) which are assumed to be proportional
to να(t), where α(t) ≤ 1 is the Regge trajectory. Therefore,
these latter two amplitudes require special consideration.
In the case of the amplitude A1(ν, t) the non-Born part
taken at ν = t = 0 is related to the difference ᾱ − β̄ of
the electromagnetic polarizabilities, whereas the non-Born

part of the amplitude A2(ν, t) is related to the backward
spin polarizability γπ. Note that neither of these latter
amplitudes contributes to forward scattering. The inte-
gral parts are completely determined by the multipoles of
π-photoproduction and the asymptotic contributions are
related to the t-channel exchange of the lightest scalar and
pseudo-scalar particles which are the σ- and π0-meson.
Since the “σ-meson” has never been observed directly, it
is more suitable to assign it to a 2π-exchange.

Such t-channel exchanges are commonly described by
a pole diagram located at the meson mass, which in case
of a π0-exchange is called the Low-amplitude [9]:

Aas
2 (ν, t) ≈ Aπ0

2 (t) =
gπNNFπ0γγ

t−m2
π0

Fπ(t) . (15)

The product of the πNN and π0γγ coupling constants
is taken to be gπNNFπ0γγ = (−0.333± 0.012) GeV−1 [9].
The Low-amplitude is extended by an off-shell form factor

Fπ(t) =
Λ2

π −m2
π

Λ2
π − t

(16)

with the cutoff parameter Λπ = 700 MeV. The same may
be applied to the σ-exchange in the t-channel:

Aas
1 (ν, t) ≈

gσNNFσγγ

t−m2
σ

. (17)

The absence of a form factor is motivated by the unknown
mass of the “σ-meson” which serves as a parameter to
reproduce the cross-sections at backward angles at photon
energies above the ∆-resonance range. A good description
of such data has been achieved with mσ = 600 MeV [9,
10] which will be used for the present investigation.

2.1 Re-evaluation of the sum rules

The photon absorption cross-section of the proton (fig. 1)
has been measured by Armstrong et al. [11] with tagged
photons in the energy range from 265 MeV to 4215 MeV
in the early 1970s. In fig. 1 the results are compared with
the very precise data obtained recently in the energy range
from 200 MeV to 800 MeV [12] at the tagged photon beam
in Mainz [13,14]. In the ∆-resonance region there is a
slight difference between both measurements. The absorp-
tion cross-section as obtained from the partial wave anal-
ysis by Arndt et al. [15], using the solution SAID-SM99K
(shown as solid line in the insert of fig. 1), exhibits rather
good agreement with the Mainz data in the ∆-resonance
region.

To evaluate the Baldin sum rule, the absorption cross-
section has been divided into the following energy inter-
vals:

I1 : ω ∈ [145, 200) ,

I2 : ω ∈ [200, 2000) , (18)
I3 : ω ∈ [2000,∞) .
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Fig. 1. The total photon absorption cross-section of the pro-
ton as measured by Armstrong et al. (Daresbury) [11] and
McCormick et al. (Mainz) [12]. The insert shows the energy
region up to 600 MeV magnified. The statistical errors of both
experiments are within the symbol size. The prediction for sin-
gle π-production as calculated from the partial wave analysis
of Arndt et al. [15] solution SAID-SM99K (shown as solid line
in the insert) shows that up to about 450 MeV the absorption
cross-section is predominantly given by this process.

Table 1. Contributions to the Baldin sum rule in units of
10−4 fm3. The different energy intervals are defined in eq. (18).
For the low-energy interval I1 various solutions of the partial
wave analysis by Arndt et al. [15] were used to calculate their
contribution. For I3 the result of ref. [16] is given. The errors
include the experimental errors of the data points, i.e. sta-
tistical and systematic errors, and an estimated error for the
integration method due to the spacing between the data points.

Solution I1(SAID) I2(data) I3 (ref. [16])

SM99K 1.39± 0.04 11.82± 0.36 0.73± 0.03
WI98K 1.19± 0.04 – –
SP97K 1.19± 0.04 – –
SM95 1.32± 0.04 – –

Average 1.27± 0.10 11.82± 0.36 0.73± 0.03

In the interval I1 the cross-section obtained from the par-
tial wave analysis will be used. The Mainz data cover the
energy range from 200 MeV to 800 MeV, and at energies
above, the Armstrong data complete the cross-sections in
the interval I2. Above 2000 MeV the method of ref. [16]
which uses an overall function fitted to the measured cross-
sections, has been adopted. In table 1 the results of the
re-evaluation of the Baldin sum rule are tabulated 3. The
low-energy interval I1 contributes about 10% to the sum
rule value and is strongly dependent on the partial wave
analysis used. In order to take such a “theoretical” uncer-
tainty properly into account, we use the average for I1,
i.e. 1.3± 0.1, and the standard deviation of the tabulated

3 The trapezoidal rule integration provided by the CERNlib
has been used to evaluate the integrals.
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Fig. 2. The TAPS detector at MAMI. The photon beam enters
the setup between the blocks A and F. Also shown are target
cell and scattering chamber.

values as the error. The Baldin sum rule is then evaluated
to be

ᾱ+ β̄ = (13.8± 0.4) . (19)

This result is, of course, in agreement with that of ref. [16],
which is (13.69± 0.14), since the same cross-section data
were used. The difference reflects i) the contribution of
the energy region close to π-threshold, i.e. interval I1, and
ii) that in ref. [16] the data points were fitted to obtain
an excellent representative function for the integration.

Sometimes the values (14.2± 0.3) [17] or (14.2± 0.5)
[18] are quoted. The first had been obtained from an anal-
ysis of the absorption cross-sections measured in the late
1960s at SLAC and DESY. These experiments have par-
tially been published by Caldwell et al. [19] and Ballam
et al. [20]. The second value is based on the partial wave
analysis of Pfeil et al. [21] and Moorhouse et al. [22]. In the
following the new value of the Baldin sum rule, eq. (19),
will be used.

3 Experiment

Low-energy Compton scattering from the proton [23] in
the energy range from 55 MeV to 165 MeV was measured
using the TAPS detector system [24] (fig. 2) set up at
the photon beam [13] at MAMI [14]. The energy of the
incident electron beam was chosen to be 180 MeV. The
emitted bremsstrahlung beam was collimated resulting in
a tagging efficiency of about 17% (measured at low in-
tensity with a BGO detector in the direct photon beam).
This low tagging efficiency has its origin in the low inci-
dent electron energy and the collimation system behind
the tagger.

The target consisted of a Kapton cylinder of 20 cm
length filled with liquid hydrogen. The target thickness
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Fig. 3. Missing-energy spectra at θγ = 59◦ (+). The shaded
area corresponds to the simulated response to elastically scat-
tered photons. Top: spectrum below the π-production thresh-
old. The hatched area is the measured spectrum of charged
particles adjusted to the photon missing-energy spectrum. Bot-
tom: spectrum above the π-production threshold. The rise in
intensity at larger missing energy is due to π0-production.

was NT = (8.66 ± 0.18) · 1023 cm−2. Data obtained from
about 200 h of beam time were analyzed.

The scattered photons were detected with the 6 blocks
A to F of the TAPS detector (fig. 2). Since the recoil-
ing protons could not be detected, a single-particle trig-
ger had to be used, i.e. the minimum block multiplicity
was set to 1 in order to create the trigger signal. There-
fore, this minimum bias trigger included all kinds of back-
ground events. There are cosmic ray events which have not
been suppressed by an active shield. There is electromag-
netic background from the beam collimation system and
from the target itself which hits the blocks installed close
to the beam. These sources of background were partially
suppressed by restrictive time cuts.

The missing-energy ∆Eγ which is defined as the dif-
ference between the measured incident photon energy
(as given by the tagger) and the expected incident pho-
ton energy (as calculated from the measured momentum
of the scattered photon assuming Compton kinematics),
∆Eγ = ω − ETAPS

ω , allows a combination of several tag-
ging channels in one spectrum without losing the energy
resolution by binning over tagger channels. Such spectra
are shown in figs. 3 and 4 for θγ = 59◦ and 133◦ at incident
photon energies of 89.1 MeV and 157.3 MeV. The peak of
elastically scattered photons appears at zero missing en-
ergy. At forward angles and low photon energies (upper

Fig. 4. Same as fig. 3 for θγ = 133◦.

spectrum in fig. 3) the background produced in the target
mainly originates from pair production. Such events are
only partially suppressed by the veto detectors. There-
fore, by identifying these charged particles with the veto
detectors, the missing-energy distributions of these events
could be measured and then normalized to the measured
photon missing-energy distribution above 20 MeV (hatch-
ed area in fig. 3).

Above the π-production threshold (lower spectra in
figs. 3 and 4) additional photons arise due to π0-photo-
production followed by their immediate 2γ-decay. These
events are clearly separated from the elastically scattered
photons. Thus, the number of scattered photons could be
extracted using the simulated response of TAPS to scat-
tered photons.

4 Electromagnetic polarizabilities ᾱ and β̄

The differential cross-sections obtained are tabulated in
table 2 and plotted in comparison with previous exper-
iments in fig. 5. The systematic (normalization) errors
of ±3%, which affect all measured cross-sections in com-
mon, arise from uncertainties in the photon flux (±2%)
and target density (±2%) combined in quadrature. The
effective solid angles were determined with Monte Carlo
simulations. Errors from uncertainties in the experiment
geometry and from the statistics of the simulation may
be treated as individual (random) errors (random sys-
tematic errors). They are estimated to be ±5%. During
the fitting procedure, as explained below, this error has
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Table 2. The measured differential cross-sections (lab system).
The errors given are statistical only.

ω (MeV) θγ = 59◦ θγ = 85◦ θγ = 107◦

58.94 13.20± 0.65 11.44± 0.60 12.43± 0.62
69.05 13.70± 0.69 10.70± 0.60 12.98± 0.68
79.19 12.95± 0.71 9.92± 0.60 13.70± 0.72
89.11 11.24± 0.70 10.97± 0.68 11.74± 0.70
98.90 10.53± 0.77 10.79± 0.74 11.61± 0.73
108.42 9.19± 0.72 10.76± 0.80 12.15± 0.79
117.60 11.63± 0.91 12.51± 0.92 11.62± 0.80
126.40 7.88± 0.83 10.06± 0.92 15.39± 1.11
134.73 9.72± 1.00 11.03± 1.04 14.32± 1.10
142.58 9.30± 1.06 11.46± 1.25 15.33± 1.16
149.87 9.90± 1.22 14.07± 1.42 15.90± 1.39
157.31 9.08± 1.35 17.05± 1.77 20.08± 1.73
163.71 11.60± 1.47 18.17± 1.92 21.36± 1.91

ω (MeV) θγ = 133◦ θγ = 155◦

58.94 14.19± 0.71 19.03± 0.91
69.05 13.71± 0.71 17.64± 0.88
79.19 13.11± 0.72 18.27± 0.91
89.11 12.91± 0.74 20.60± 1.02
98.90 14.06± 0.84 18.02± 0.97
108.42 10.84± 0.77 17.52± 1.03
117.60 14.58± 0.99 20.39± 1.27
126.40 16.14± 1.12 16.71± 1.12
134.73 15.15± 1.11 19.33± 1.30
142.58 18.87± 1.43 19.67± 1.34
149.87 19.14± 1.62 22.61± 1.68
157.31 21.80± 1.86 30.55± 2.10
163.71 25.13± 2.10 32.01± 2.31

therefore been added in quadrature to the statistical er-
rors of the individual data points. The latter are given in
table 2.

The overall agreement between the different experi-
ments is very satisfactory, except for the 150◦ data of
ref. [25]. The calculations within the dispersion rela-
tion approach using the π-photoproduction multipoles of
Arndt et al. [15], solution SAID-SM99K, and best-fit val-
ues for the polarizabilities (see below) are included in the
figure as solid lines.

With the help of the dispersion relation approach the
electromagnetic polarizabilities of the proton can be ex-
tracted from the experimental cross-sections. Due to the
constraints of the invariant scattering amplitudes the dif-
ference ᾱ − β̄ and the sum ᾱ + β̄ may be used as free
parameters or equivalently ᾱ and β̄. The procedure used
in this work was to take ᾱ and β̄ as free parameters, and
sometimes as well the constraint given by the Baldin sum
rule as a single datum. Using standard χ2 minimization 4,
the result obtained, when fitting the TAPS data alone
without the sum rule constraint, is

ᾱ = 11.9± 0.5(stat.)∓ 1.3(syst.) ,
β̄ = 1.2± 0.7(stat.)± 0.3(syst.) ,

(20)

4 For the fitting procedure the program package MINUIT
from the CERNlib was used.
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Fig. 5. The measured differential cross-sections in the lab sys-
tem as obtained by the TAPS experiment (•) [23]. The addi-
tional data are taken from ref. [26] (◦), ref. [27] (�) and ref. [25]
(�). The statistical errors are partially within the symbol size.
The solid line shows the calculation of the dispersion relation
approach using the π-production multipoles of Arndt et al.
[15], solution SAID-SM99K. The polarizabilities were chosen
to be: ᾱ+ β̄ = 13.8, ᾱ − β̄ = 10.5 and γπ = −37.1.

with χ2red = 80.8/65-2 = 1.28. The errors given are the
statistical (including the “random systematic” error) and
systematic error. The Baldin sum rule obtained from this
result, ᾱ + β̄ = 13.1 ± 0.9 ∓ 1.0, is in agreement with
the value given in eq. (19), within the errors. The sys-
tematic errors in eq. (20) were obtained by re-scaling the
differential cross-sections by ±3% according to the com-
mon normalization error. The low-energy data of Feder-
spiel et al. [26], MacGibbon et al. [27] and Zieger et al.
[28] were treated in the same way which resulted in the
polarizabilities in table 3.

When fitting independent experiments the procedure
above is not suitable. A different way of using system-
atic errors in fitting procedures was proposed in ref. [29].
There it is assumed that the systematic error is an energy-
independent normalization error which can be treated
like a statistical one. Therefore, according to ref. [29],
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Table 3. The polarizabilities ᾱ and β̄ as obtained by fitting
the differential cross-sections from different experiments. The
errors given are the statistical and systematic ones. fixed de-
notes that ᾱ+ β̄ = 13.8± 0.4 was included as a single datum.
The data of Zieger have been fitted with ᾱ − β̄ as the only
parameter. The last line shows the result of the global fit for
which all data sets were allowed to vary according to their
systematic errors.

Data ᾱ+ β̄ fixed ᾱ+ β̄ free

TAPS ᾱ 12.1± 0.4∓ 1.0 11.9± 0.5∓ 1.3
(this work) β̄ 1.6± 0.4± 0.8 1.2± 0.7± 0.3

MacGibbon ᾱ 11.9± 0.5∓ 0.8 12.6± 1.2∓ 1.3
[27] β̄ 1.9± 0.5± 0.8 3.0± 1.8± 0.1

Federspiel ᾱ 10.8± 2.2∓ 1.3 10.1± 2.6∓ 2.0
[26] β̄ 3.0± 2.2± 1.3 2.0± 3.3± 0.3

Zieger ᾱ − β̄ 6.4± 2.3± 1.9
[28]

Global ᾱ 12.1± 0.3∓ 0.4 11.9± 0.5∓ 0.5
Fit β̄ 1.6± 0.4± 0.4 1.5± 0.6± 0.2

an extended χ2-function,

χ2 =
∑ [(

Nσexp − σtheo
N∆σ

)2
]
+

(
N − 1
∆σsys

)2

, (21)

can be minimized. Here N is a normalization parameter
used to change the normalization for each data set within
its systematic errors ∆σsys. A fit to the low-energy data
of refs. [26–28] and the new TAPS data, and the sum rule
constraint of eq. (19) then leads to the following result
(χ2red = 108.6/102-6 = 1.13):

ᾱ = 12.1± 0.3(stat.)∓ 0.4(syst.)± 0.3(mod.) ,
β̄ = 1.6± 0.4(stat.)± 0.4(syst.)± 0.4(mod.) ,

(22)

where the first error denotes the statistical, the second the
systematic and the third the model-dependent one. The
results of table 3 can be summarized as in fig. 6 where
the contours in the (ᾱ-β̄)-plane for χ2min + 1 are plotted.
In addition, the Baldin sum rule and the value obtained
from the experiment by Zieger et al. [28] are included.
The thick solid line then is the result of eq. (22) with the
statistical error only.

The model-dependent errors in eq. (22) have been es-
timated by varying the main parameters entering the cal-
culation. These are:

– the coupling constants gπNNFπ0γγ :
∆gπNNFπ0γγ = ±3.6% ⇒ ∆ᾱ(β̄) ≈ ∓0.13(±0.13);

– the cutoff parameter Λπ of the π0-form factor:
∆Λπ = ±100 MeV ⇒ ∆ᾱ(β̄) ≈ ∓0.12(±0.12);

– the strength of the M1+ multipole:
∆M1+ = ±1% ⇒ ∆ᾱ(β̄) ≈ ±0.10(∓0.10);
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Fig. 6. Error contour plot in the (ᾱ-β̄)-plane of the experi-
ments in table 3 (last column) for which the errors are taken
as the statistical ones only. The contours correspond to the val-
ues χ2

min+1 of the individual fits. Also shown are the sum rule
constraint and the value ᾱ− β̄ as follows from the experiment
by Zieger et al. [28]. The thick solid line shows the result of
the global fit, eq. (22).

– the E2
M1 ratio of the resonance multipoles:

∆ E2
M1 = ±1% ⇒ ∆ᾱ(β̄) ≈ ∓0.08(±0.08);

– the σ-mass parameter mσ:
∆mσ = ±20 MeV ⇒ ∆ᾱ(β̄) ≈ ∓0.04(±0.05);

– the backward spin polarizability γπ:
∆γπ = ±1 ⇒ ∆ᾱ(β̄) ≈ ±0.26(∓0.26).

These contributions were obtained by keeping the nor-
malization factors fixed. The total model-dependent er-
rors were then taken as the individual contributions added
in quadrature. Since Λπ = 700 MeV is “estimated from
the axial radius of the nucleon and the size of the pion”
(see ref. [9] and references therein), the uncertainties of
these quantities can be used to estimate an uncertainty of
∆Λπ = ±100 MeV. Another error estimate, i.e. ∆mσ =
±20 MeV, is based on new experimental data on Comp-
ton scattering from the proton above the∆-resonance [10].
For these new data a good description has been achieved
for mσ = 600 MeV within a range of about ±20 MeV.

From eq. (22) it follows that the difference of the elec-
tromagnetic polarizabilities is

ᾱ− β̄ = 10.5± 0.9(stat.+ syst.)± 0.7(mod.) . (23)

This will be taken as the new global average. A comparison
with the global average as evaluated by MacGibbon et al.
[27], ᾱ − β̄ = 10.0 ± 1.5 ± 0.9, exhibits the improvement
achieved with the TAPS experiment. The experimental
error has been reduced by almost a factor 2/3. Agreement
has also been achieved with the LEGS group. Their results
[30]

ᾱ+ β̄ = 13.23± 0.86(stat. + syst.) , (24)

ᾱ− β̄ = 10.11± 1.74(stat. + syst.) , (25)

are consistent with ours, as far as ᾱ and β̄ are concerned.
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5 Backward spin polarizability γπ

The above results were obtained using a fixed value of
the backward spin polarizability γπ = −37.1. The wide
angular and energy range of the TAPS experiment also
allows investigation of γπ in more detail.

The backward spin polarizability γπ is given by the
non-Born contributions of the invariant amplitudes A2

and A5. Only the asymptotic part of A2 is left as a source
for an additional contribution beyond the π0-exchange in
the t-channel. In this analysis such a contribution has
been modeled with a t-dependent term in the form of a
monopole form factor,

Aas
2 (ν, t) ≈ Aπ0

2 (t)− 2πm
δγπ

1− t
Λ2

, (26)

from which the substitution follows:

γπ → γπ + δγπ . (27)

The parameter Λ defines the slope of the function at t = 0
and is chosen to be Λ = 700 MeV. In varying δγπ the
influence of any deviation from the standard value of γπ

can be investigated in terms of this ansatz.
Using the same fitting procedure as described above,

the result as obtained from the TAPS data alone without
the sum rule constraint is

ᾱ = 12.2 ± 0.8(stat.)∓ 1.4(syst.) ,
β̄ = 0.8 ± 0.9(stat.)± 0.5(syst.) ,
γπ = −35.9 ± 2.3(stat.)∓ 0.4(syst.) ,

(28)

with χ2red = 80.6/65-3 = 1.30. A fit to all low-energy data
including the sum rule constraint yields

ᾱ = 12.4 ± 0.6(stat.) ∓ 0.5(syst.) ± 0.1(mod.) ,
β̄ = 1.4 ± 0.7(stat.) ± 0.4(syst.) ± 0.1(mod.) ,
γπ = −36.1 ± 2.1(stat.) ∓ 0.4(syst.) ± 0.8(mod.) ,

(29)

with χ2red = 108.4/102-7 = 1.14. From these results one ob-
tains the difference of the electromagnetic polarizabilities

ᾱ− β̄ = 11.0± 1.3(stat.+syst)± 0.1(mod.) . (30)

Compared to the result of eq. (23) the larger statisti-
cal and systematic error is compensated by the reduced
model-dependent error. The latter effect is absorbed into
the large error of γπ in eq. (29).

The extracted value of γπ, eq. (29), is in accordance
with our findings in Compton scattering above 200 MeV
[31,10]. There is no indication of any modification of the
asymptotic contribution Aas

2 . This statement is confirmed
by the LARA experiment [10] from which

γπ = −37.9± 0.6(stat.+ syst.)± 3.5(mod.) (31)

had been extracted. Looking at γπ, the difference between
the LARA and TAPS experiment can be seen in the dif-
ferent size of the errors. Whereas our low-energy TAPS
results give a rather large experimental error of ±2.3,

the model-dependent error of ±3.5 dominates the “high-
energy” LARA experiment. This exhibits the fact that the
influence of γπ increases with increasing photon energy.

Despite the good agreement of the electromagnetic po-
larizabilities between the results presented here and the
ones published by the LEGS group [30], see eqs. (24)
and (25), our value of γπ contradicts the LEGS value [30]
which is

γπ = −27.1± 2.2(stat.+ syst.)± 2.6(mod.) . (32)

As already described in ref. [10], this contradiction has
its main origin in the disagreement of the measured cross-
sections above the π-threshold mainly at backward angles.

6 Summary

Differential cross-sections for Compton scattering at pho-
ton energies from 55 MeV to 165 MeV have been measured
at five scattering angles between 59◦ and 155◦. The elec-
tromagnetic polarizabilities of the proton have been ex-
tracted using dispersion relations. The new global average
ᾱ− β̄ = 10.5± 0.9(stat.+ syst.)± 0.7(mod.) confirms the
old global average of MacGibbon et al. [27] with a reduced
experimental error. This new global average includes the
Baldin sum rule ᾱ + β̄ = 13.8 ± 0.4 which has been re-
evaluated from the measured absorption cross-sections.

The extracted value of the backward spin polarizability
γπ = −36.1±2.1(stat.+ syst.)±0.8(mod.) is in agreement
with our results above 200 MeV [31,10]. The conclusion
to be drawn is that the obtained differential cross-sections
do not show any indication of an additional asymptotic
contribution to the amplitude A2. Such a contribution, as
suggested by the LEGS group [30], would modify the value
of γπ considerably.
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